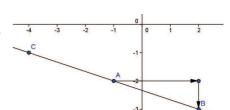
TMERC

Correction de l'évaluation n°3

Exercice n°1 (2 points):

1°) d est la droite passant par le point A (-1,-2) et de coefficient directeur m = $-\frac{1}{3}$: voir figure.



2°) 1ère méthode :

Théorème :

Le plan est muni d'un repère orthogonal $(0, \dot{i}, \dot{j})$. Soit une droite D non parallèle à l'axe des ordonnées.

Si $M_1(x_1, y_1)$ et $M_2(x_2, y_2)$ sont deux points de D d'abscisses différentes, alors D a pour coefficient directeur : $m = \frac{y_2 - y_1}{x_2 - x_1}$ et a pour équation réduite $y = m(x - x_1) + y_1$

Donc d'après le théorème ci-dessus, l'équation réduite de d est $y = -\frac{1}{3}(x+1)-2$ (on a remplacé x_1 et y_1 par les coordonnées de A)

D'où
$$y = -\frac{1}{3}x - \frac{1}{3} - 2$$
.

Conclusion : une équation de (d) est $y = -\frac{1}{3}x - \frac{7}{3}$.

2ième méthode :

On sait qu'une équation de d est de la forme y = mx+p où m est le coefficient directeur donc une équation de d est $y = -\frac{1}{3}x + p$

A (-1,-2) \in d donc $-2 = -\frac{1}{3} \times (-1) + p$. Donc $-2 = \frac{1}{3} + p$. Soit $-2 - \frac{1}{3} = p$. D'où $p = -\frac{7}{3}$.

Conclusion : une équation de d est $y = -\frac{1}{3}x - \frac{7}{3}$

Exercice n°2 (3 pts) :

1°) a) Le coefficient directeur de D₁ est 6.

b) D_1 a pour équation réduite $y = m(x - x_1) + y_1$ où m est le coefficient directeur de D_1 et $(x_1; y_1)$ sont les coordonnées de A D_1 passe par A(2,1) donc l'équation réduite de D_1 est y = 6(x-2)+1. C'est-à-dire y = 6x - 11.

 2°) Le coefficient directeur est $-\frac{1}{2}$ et l'ordonnée à l'origine est 3 (lectures graphiques).

L'équation réduite de la droite D_2 est $y = -\frac{1}{2}x + 3$

 3°) Le coefficient directeur est 0 ; l'équation réduite de la droite D_3 est y = -3

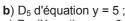
Exercice n°3 (3,5 pts):

a) D_4 d'équation 3x + 2y -5 = 0

$$3x+2y-5=0 \Leftrightarrow 2y=-3x+5 \Leftrightarrow y=-\frac{3}{2}x+\frac{5}{2}$$
.

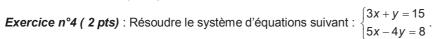
L'ordonnée à l'origine est 2,5 et le coefficient directeur est $-\frac{3}{2}$

Pour x =1, y =1 donc D_4 passe par A(1; 1); Pour x = 3, y = -2 donc D_4 passe par B(3; -2)



c)
$$D_6$$
 d'équation $x = -3$

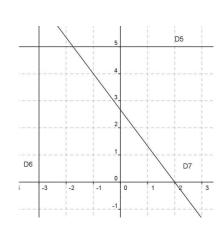
d) D_7 d'équation $y = -\frac{4}{3}x + \frac{8}{3}$ les points (2,0), (-1, 4) et (5, -4) sont sur D_7



$$\begin{cases} 3x + y = 15 & (1) \\ 5x - 4y = 8 & (2) \end{cases} \Leftrightarrow \begin{cases} 12x + 4y = 60 & 4 \times (3) \\ 5x - 4y = 8 & (2) \end{cases}$$

On ajoute les deux équations membres à membres et on obtient 17x = 68 donc $x = \frac{68}{17} = 4$.

On remplace x par 4 dans 3x + y = 15, on obtient 12 + y = 15. D'où y = 3.



Conclusion : le système a pour solution x = 4 et y = 3

Autre méthode (moins conseillée mais possible) :

$$\begin{cases} 3x + y = 15 & (1) \\ 5x - 4y = 8 & (2) \end{cases} \Leftrightarrow \begin{cases} -15x - 5y = -75 & -5 \times (3) \\ 15x - 12y = 24 & 3 \times (2) \end{cases}$$

On ajoute les deux équations membres à membres et on obtient -17y = -51 donc y = $\frac{51}{17}$ = 3.

Exercice n°5 (1,5 pts):

$$-0.16x + 364 = 0 \Leftrightarrow x = \frac{-364}{-0.16} = 2275$$

Valeurs de x	-∞		2275		+∞
Signe de -0,16x+364		+	0	-	

Exercice n°6 (6 pts): a) on peut résoudre cette inéquation à l'aide d'un tableau de signes.

$$3x - 1 = 0 \Leftrightarrow 3x = 1 \Leftrightarrow x = \frac{1}{3}$$

$$x + 2 = 0 \Leftrightarrow x = -2$$

Valeurs de x	-∞		-2		1/3		+∞
Signe de 3x-1		-		-	0	+	
Signe de 2+x		-	0	+		+	
Signe du produit		+	0	-	0	+	

Conclusion : l'inéquation (3x - 1)(2 + x) > 0 a pour ensemble de solutions $S =]-\infty; -2[\cup]\frac{1}{3}; +\infty[$

b)
$$-(x-2)(1-x) > 0$$
:
 $x-2=0 \Leftrightarrow x=2$;
 $1-x=0 \Leftrightarrow x=1$

Valeurs de x	-∞		1		2		$+\infty$
Signe de -1		-		-		-	
Signe de x-2		-		-	0	+	
Signe de 1-x		+	0	-		-	
Signe du produit		+	0	-	0	+	

Conclusion : | inéquation -(3-2)(1-x) > 0 a pour ensemble de solutions $S =]-\infty$; $1[2; +\infty[$

c) $(-0.6x + 2.1) \times x^2 < 0$;

Un carré est positif ou nul donc pour tout réel x $x^2 \ge 0$.

$$-0.6x + 2.1 = 0 \Leftrightarrow -0.6x = -2.1 \Leftrightarrow x = \frac{-2.1}{-0.6} = \frac{7}{2}$$

8		0		$\frac{7}{2}$		+8
	+	0	+		+	
	+		+	0	-	
	+	0	+	0	-	
		-∞ + + +	-∞ 0 + 0 + + 0	-∞ 0 + 0 + + + + 0 +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Conclusion : cette inéquation a pour ensemble de solutions $\left]\frac{7}{2}$; $+\infty\right[$

d)
$$3(x+1)(2-x) \le 0$$
:

$$x+1=0 \Leftrightarrow x=-1$$
;

$$2-x=0 \Leftrightarrow x=2$$

Valeurs de x	-∞		-1		2		+∞
Signe de 3		+		+		+	
Signe de x+1		-	0	+		+	
Signe de 2-x		+		+	0	-	
Signe du produit		-	0	+	0	-	

Conclusion : l'inéquation $3(x+1)(2-x) \le 0$ a pour ensemble de solutions $S =]-\infty; -1] \cup [2; +\infty[$

Exercice n°7 (2 pts): $\frac{(2x-5)(3x-1)}{(5-x)} \ge 0$. On peut résoudre l'inéquation à l'aide d'un tableau de signes.

 $5 - x = 0 \Leftrightarrow x = 5$. 2 est valeur interdite.

$$2x-5=0 \Leftrightarrow 2x=5 \Leftrightarrow x=\frac{5}{2}$$

$$3x-1=0 \Leftrightarrow 3x=1 \Leftrightarrow x=\frac{1}{3}$$

$$S = \left] - \infty ; \frac{1}{3} \right] \cup \left[\frac{5}{2} ; 5 \right[$$

Valeurs de x	-∞		1/3		<u>5</u> 2		5	+∞
Signe de 2x-5		-		-	0	+		+
Signe de 3x-1		-	0	+		+		+
Signe de 5-x		+		+		+	0	-
Signe du quotient		+	0	-	0	+		-