Exercice 1:
$$u_n = \frac{n+3}{n+4}$$

$$u_{n+1} = \frac{n+1+3}{n+1+4} = \frac{n+4}{n+5}$$

$$\operatorname{donc} \ u_{n+1} - u_n = \frac{n+4}{n+5} - \frac{n+3}{n+4} = \frac{(n+4)^2}{(n+4)(n+5)} - \frac{(n+3)(n+5)}{(n+5)(n+4)} = \frac{(n^2+8n+16) - (n^2+8n+15)}{(n+4)(n+5)} = \frac{1}{(n+4)(n+5)}$$

Conclusion: la suite est strictement croissante

Exercice n°2: pour tout entier n non nul $u_{n+1} = \frac{5^{n+1}}{n+1}$ et $u_n = \frac{5^n}{n}$.

Pour tout entier n non nul : $5^n > 0$ et n > 0 donc $u_n > 0$

Pour tout entier n non nul : $\frac{u_{n+1}}{u_n} = \frac{\frac{5^{n+1}}{n+1}}{\frac{5^n}{n}} = \frac{5^{n+1}}{n+1} \times \frac{n}{5^n} = \frac{5n}{n+1}$

$$\frac{u_{n+1}}{u_n} - 1 = \frac{5n}{n+1} - 1 = \frac{4n-1}{n+1}$$

On sait que $n \ge 1$ donc $4n \ge 4$ donc $4n - 1 \ge 3 > 0$.

On en déduit que pour tout entier n non nul $\frac{u_{n+1}}{u_n} - 1 > 0$, c'est-à-dire $\frac{u_{n+1}}{u_n} > 1$ et comme u_n est positif alors $u_{n+1} > u_n$.

Conclusion: la suite est strictement croissant

Exercice n°3: (u_n) est la suite définie par u_0 et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n + 2}$

Une valeur approchée à 10⁻⁶ près de u₅ est 1,996754.

La suite semble croissante, majorée par 2 et minorée par 0,5.

2.
$$u_0 = 5$$

Une valeur approchée à 10^{-6} près de u_5 est 2,003035 . La suite semble décroissante, majorée par 5 et minorée par 2.

3 . Lorsqu'on choisit $u_0 = 2$, la suite est stationnaire.

Exercice 4: soit (u_n) la suite définie pour tout entier naturel n, par $u_{n+1} = \frac{3u_n + 2}{u_n + 4}$ et u₀ = $-\frac{3}{2}$.

On admet que un est défini pour tout n de N

1.a)
$$u_1 = \frac{3u_0 + 2}{u_0 + 4} = \frac{3 \times \left(-\frac{3}{2}\right) + 2}{-\frac{3}{2} + 4} = \frac{-\frac{9}{2} + \frac{4}{2}}{-\frac{3}{2} + \frac{8}{2}} = \frac{-\frac{5}{2}}{\frac{5}{2}} = -1$$
;

$$u_2 = \frac{3u_1 + 2}{u_1 + 4} = \frac{3 \times (-1) + 2}{-1 + 4} = \frac{-3 + 2}{3} = \frac{-1}{3}$$
; $u_3 = \frac{3}{11}$

$$u_1 - u_0 = -1 + 1.5 = 0.5$$

$$u_2 - u_1 = -\frac{1}{3} + 1 = \frac{2}{3}$$
.

 $u_1 - u_0 \neq u_2 - u_1$ donc la suite (u_n) n'est pas arithmétique.

b) Une valeur approchée à 10^{-6} près de $u_5 \approx 0.853881$

2.
$$f(x) = \frac{3x+2}{x+4} sur[-1,5; 1,5]$$

a) f est dérivable sur [-1,5; 1,5] sur
$$f'(x) = \frac{3(x+4)-(3x+2)\times 1}{(x+4)^2} = \frac{3x+12-3x-2}{(x+4)^2} = \frac{10}{(x+4)^2}$$

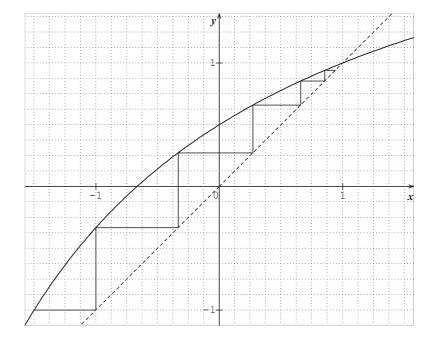
b) Un carré est positif ou nul.

sur [-1,5; 1,5], $(x+4)^2 > 0$. De plus 10 est strictement positif donc f' est strictement positif sur [-1,5; 1,5]. f est donc croissante sur [-1,5; 1,5].

Х	-1,5		1,5
f'(x)		+	
f(x)		*	13 11
	-1		

3 . a.							
Х	-1,5	-1	-0,5	0	0,5	1	1,5
f(x)	-1	-0,333	0,14	0,5	0,78	1	1,18

- b. Courbe représentative de f sur [-1,5; 1,5] et de la droite d'équation y = x.
- c. voir figure .
- **d**. La suite semble strictement croissante, majorée par 1, minorée par -1,5.



5. Soit
$$(v_n)$$
 la suite définie par $v_n = \frac{u_n - 1}{u_n + 2}$;

on admet que v_n est défini pour tout n

a)
$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} + 2} = \frac{\frac{3u_n + 2}{u_n + 4} - 1}{\frac{3u_n + 2}{u_n + 4} + 2} = \frac{\frac{3u_n + 2}{u_n + 4} - \frac{u_n + 4}{u_n + 4}}{\frac{3u_n + 2}{u_n + 4} + \frac{2u_n + 8}{u_n + 4}} = \frac{\frac{2u_n - 2}{u_n + 4}}{\frac{5u_n + 10}{u_n + 4}} = \frac{2u_n - 2}{5u_n + 10}$$

$$v_{n+1} = \frac{2(u_n - 1)}{5(u_n + 2)} = \frac{2}{5}v_n$$

Conclusion: (v_n) est géométrique de raison $\frac{2}{5}$ et premier terme $v_0 = \frac{u_0 - 1}{u_0 + 2} = \frac{-2.5}{0.5} = -5$

b)
$$v_n = -5 \times \left(\frac{2}{5}\right)^n$$
.

c) pour tout n de N,
$$1 - v_n = 1 - \frac{u_n - 1}{u_n + 2} = \frac{3}{u_n + 2}$$
.

Conclusion: $1-v_n \neq 0$.

d)
$$v_n = \frac{u_n - 1}{u_n + 2}$$
 donc $v_n(u_n + 2) = u_n - 1$.

$$u_n v_n + 2v_n = u_n - 1$$
. D'où $u_n v_n - u_n = -1 - 2v_n$.

$$u_n(v_n - 1) = -1 - 2v_n$$
; $u_n = \frac{-1 - 2v_n}{v_n - 1}$

Conclusion:
$$u_n = \frac{1 + 2v_n}{1 - v_n}$$

e)
$$u_n = \frac{1 - 10 \times \left(\frac{2}{5}\right)^n}{1 + 5 \times \left(\frac{2}{5}\right)^n}$$
.

f) Déterminer la valeur exacte, puis une valeur approchée à 10⁻⁶ près, de u₅. vérifier que vous retrouvez bien le résultat obtenu dans le 1.b)

Exercice n°5: (u_n) est la suite définie pour tout entier naturel n, par $u_n = cos\left(\frac{n\pi}{2}\right)$

1.
$$u_0 = \cos\left(\frac{0\pi}{2}\right) = 1$$
, $u_1 = \cos\left(\frac{\pi}{2}\right) = 0$, $u_2 = \cos\left(\frac{2\pi}{2}\right) = \cos(\pi) = -1$ et $u_3 = \cos\left(\frac{3\pi}{2}\right) = 0$

2.
$$u_{n+4} = \cos\left(\frac{(n+4)\pi}{2}\right) = \cos\left(\frac{n\pi}{2} + 2\pi\right)$$
;

Or la fonction cosinus est périodique de période 2π donc $u_{n+4} = \cos\left(\frac{n\pi}{2}\right) = u_n$.

3. La suite est périodique, de période 4.