Exercice nº1: Soit ABC un triangle non aplati.

K est le barycentre du système $\{(A,1); (B,3)(C,-1)\}$.

I est le milieu de [AB] et G est le centre de gravité du triangle ABC.

- 1) Déterminer l'ensemble des points M du plan tels que : $\|\overrightarrow{MA} + 3\overrightarrow{MB} \overrightarrow{MC}\| = 4$.
- 2°) Déterminer l'ensemble des points M du plan tels que : $\overrightarrow{MA} + 3\overrightarrow{MB} \overrightarrow{MC}$ soit colinéaire à \overrightarrow{BC} .
- 3) Déterminer l'ensemble des points M du plan tels que : $\|\overrightarrow{MA} + 3\overrightarrow{MB} \overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC}\|$.
- 4) Déterminer l'ensemble des points M de l'espace t els que : $\|\overrightarrow{MA} + 3\overrightarrow{MB} \overrightarrow{MC}\| = \|\overrightarrow{MA} + \overrightarrow{MB} 2\overrightarrow{MC}\|$.

Exercice n²:

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x + 3$ et C_f la courbe représentative de f: voir figure ci-contre.

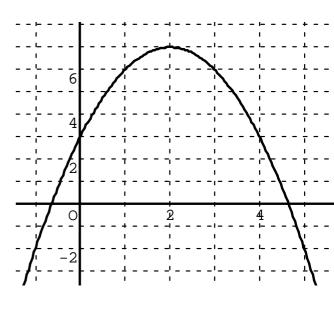
- 1°) Exprimer le plus simplement possible en fonction de h, le taux de variation de f entre -1 et -1+h où h est un nombre réel non nul.
- 2) Utiliser le résultat obtenu au 1) pour démontre r que f est dérivable en -1 et déterminer f '(-1).
- 3) Soit T la tangente à la courbe C au point d'absc isse -1.

Construire T, sans déterminer son équation réduite, sur la figure contre. Justifiez votre construction.

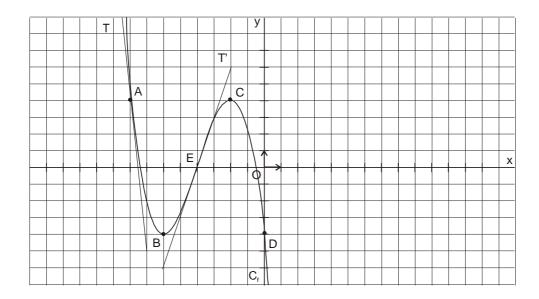
4°) Le tableau suivant donne les nombre dérivés de f pour certaines valeurs de la variable.

14 141145161								
а	-1	0	1	2	3	4	5	
f '(a)	6	4	2	0	-2	-4	-6	

- a) Vérifier le résultat obtenu au 29.
- b) Construire sur la figure ci-contre, la tangente T_B à la courbe C_f au point B d'abscisse 2 (justifiez votre construction).
- c) Construire la tangente T_C à la courbe C_f au point $\,C\,d$ 'abscisse 4 (faire apparaître sur le graphique les traits de construction).



Exercice n3: Soit la fonction f définie sur l'intervalle [-9, 1] dont la courbe représentative Cf est donnée par le graphique ci



dessus

La droite T est la tangente en A à la courbe C_f et la droite T' est la tangente en E à la courbe C_f

- 1°) Lire sur le graphique f(-2).
- 2°) Lire sur le graphique f '(-8) (justifiez votre r éponse) puis lire f '(-4).
- 39 Déterminez l'équation réduite de T la tangente à Cf en A.
- 49 Résoudre graphiquement dans [-9, 1]:
- a) f(x) = 4
- b) f'(x) = 0
- c) f'(x) > 0 (justifier).

Exercice n⁴: f est la fonction définie sur \mathbb{R} - $\{5\}$ par $f(x) = \frac{2}{x-5}$. Soit C sa courbe représentative dans un repère

- 1°) a) Démontrer que pour a $\neq 5$ et pour tout réel h $\neq 0$ tel que a+h $\neq 5$, $\frac{f(a+h)-f(a)}{h} = -\frac{2}{(a+h-5)(a-5)}$.
- b) Utiliser le résultat obtenu au a) pour démontrer que f est dérivable pour tout réel différent de 5 et déterminer f '(a).
- 29 En déduire le coefficient directeur de la tangen te T à C au point d'abscisse 2.
- 3°) Déterminer l'équation de T.

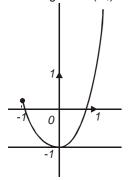
Exercice n°5:

Démontrer que la fonction f définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$ est dérivable sur 0, $+\infty$ et admet pour fonction dérivée la fonction f' définie sur]0,+ ∞ [parf'(x) = $\frac{1}{2\sqrt{x}}$.

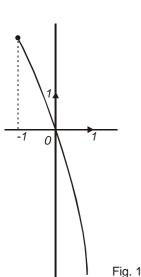
Exercice n°6 : Le plan est rapporté à un repère orthonormal. La courbe (C₁) tracée ci-dessous est la courbe représentative d'une fonction f définie sur l'intervalle [-1; +∞[.

On admettra que:

- f $(-1) \approx 0.26$
- La tangente à (C₁) au point de coordonnées (0 ; -1) est parallèle à l'axe des abscisses.



- 1. En utilisant la courbe (C₁):
- a) Déterminer f(0) et f '(0) (justifier).
- b) Dresser le tableau de variation de f sur [-1; $+\infty$ [. En déduire le signe de f '(x) en fonction de x.
- 2. On se propose d'étudier la fonction dérivée f ' de la fonction f, sur l'intervalle [-1 ; +∞[. L'un des tracés ci-dessous est celui de la courbe représentative (C2) de la fonction f'. Déterminer lequel, en justifiant la réponse.



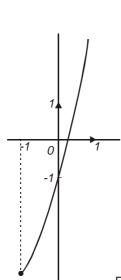


Fig. 2

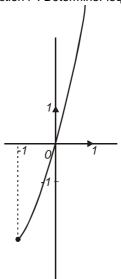


Fig. 3