Exercice n9

1) $g(x) = 0 \Leftrightarrow -4x^2 - 2x + 3 = 0$.

Soit Δ le discriminant de g(x) : $\Delta = (-2)^2 - 4x(-4)x(3) = 4 + 48 = 52 = 4x13$.

 Δ >0 donc g(x) = 0 a deux solutions x' et x" :

$$x' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{2 - \sqrt{4 \times 13}}{-8} = \frac{2 - 2\sqrt{13}}{-8} = \frac{2(1 - \sqrt{13})}{-2 \times 4} = \frac{1 - \sqrt{13}}{-4} = \frac{-1 + \sqrt{13}}{4} \text{ et } x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{2 + 2\sqrt{13}}{-8} = \frac{-1 - \sqrt{13}}{4}$$

$$\text{Conclusion: g(x) = 0 pour } x = \frac{-1 + \sqrt{13}}{4} \text{ ou } x = \frac{-1 - \sqrt{13}}{4}$$

Conclusion : g(x) = 0 pour x =
$$\frac{-1 + \sqrt{13}}{4}$$
 ou x = $\frac{-1 - \sqrt{13}}{4}$

Théorème 1 : Soit $P(x) = ax^2 + bx + c$, où $a \neq 0$.

Si $\Delta > 0$ alors P(x) peut se factoriser et P(x) = a(x - x') (x - x") où x' et x" sont les racines de P(x).

Conclusion: $g(x) = -4 \left(x - \frac{-1 + \sqrt{13}}{4}\right) \left(x - \frac{-1 - \sqrt{13}}{4}\right)$

Théorème 2 : Soit P(x) = $ax^2 + bx + c$, où $a \neq 0$.

Si Δ>0 alors P(x) est du signe de a "à l'extérieur "des racines et du signe de - a "à l'intérieur".

lci a = -4 donc
$$g(x) > 0$$
 pour x appartenant à] $\frac{-1 - \sqrt{13}}{4}$, $\frac{-1 + \sqrt{13}}{4}$ [

Exercice n2:

1) a)
$$P(1) = -14x1^3 + 33x1^2 - 16x1 - 3 = -14 + 33 - 16 - 3 = 0$$
.

b) P(x) = (x-a)Q(x).

P(x) est degré 3 donc Q(x) est de degré 2 et $Q(x) = ax^2 + bx + c$.

Par identification : a = -14 et c = 3

Donc $P(x) = (x-1)(-14x^2 + bx + 3)$ où b est un réel à déterminer.

Développons
$$(x - 1)(-14x^2 + bx + 3)$$
: $(x - 1)(-14x^2 + bx + 3) = -14x^3 + bx^2 + 3x + 14x^2 - bx - 3 = -14x^3 + (b+14)x^2 + (3 - b) x - 3$.

D'après le théorème d'identification : b + 14 = 33 et 3 - b = -16 donc b = 19

Conclusion: $P(x) = (x - 1) (-14x^2 + 19x + 3) \text{ et } Q(x) = -14x^2 + 19x + 3.$

2°) **a**) Soit Δ le discriminant de -14 x^2 + 19x +3 : Δ = (19) 2 -4x(-14)x3 = 361 + 168 = 529

$$\Delta > 0$$
 donc -14x² + 19x +3 a deux racines x' et x" : $x' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-19 - 23}{-28} = 1, 5 = \frac{3}{2}$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-19 + 23}{-28} = \frac{+4}{-28} = -\frac{1}{7}$

Finalement -14x² + 19x +3 = -14(x -
$$\frac{3}{2}$$
)(x + $\frac{1}{7}$). D'où $P(x) = -14(x - 1)(x - $\frac{3}{2}$)(x + $\frac{1}{7}$)$

Donc P(x) = 0
$$\Leftrightarrow$$
 -14(x - 1) (x + $\frac{1}{7}$)(x- $\frac{2}{3}$) = 0 \Leftrightarrow x = $\frac{1}{1}$ ou x = $\frac{1}{7}$ ou x = $\frac{3}{2}$.

Conclusion :
$$P(x) = 0$$
 a trois solutions 1, $\frac{3}{2}$ et - $\frac{1}{7}$.

b) On utilise le théorème 2 ci dessus pour le signe de $-14x^2 + 19x + 3$:

X	-∞		$-\frac{1}{7}$		1		1,5		+∞
x -1		-		-	0	+		+	
$-14x^2 + 19x + 3$		-	0	+		+	0	-	
P(x)		+	0	-	0	+	0	-	

c)
$$P(x) > 0$$
 a pour ensemble de solutions $]-\infty; -\frac{1}{7}[\cup]1;1,5[$

Exercice n3: a)
$$-\frac{1}{7}x^2 + 2x - 7 < 0$$
.

Soit
$$\Delta$$
 le discriminant de $-\frac{1}{7}x^2 + 2x - 7$: $\Delta = (2)^2 - 4x(-\frac{1}{7})x(-7) = 4 - 4 = 0$.

$$\Delta = 0 \text{ donc } -\frac{1}{7}x^2 + 2x - 7 \text{ a une racine double } x_0 : x_0 = \frac{-2}{-\frac{2}{7}} = \frac{2}{\frac{2}{7}} = 2 \times \frac{7}{2} = 7$$

Théorème 4 : Soit P(x) = $ax^2 + bx + c$, où $a \ne 0$. Si $\Delta = 0$: P(x) est du signe de a pour x réel différent de $\frac{-b}{2a}$

Donc $-\frac{1}{7}x^2 + 2x - 7$ est strictement négatif pour $x \neq 7$.

Donc l'inéquation $-\frac{1}{7}x^2 + 2x - 7 < 0$ a pour ensemble de solutions \mathbb{R} - { 7 }.

Interprétation graphique : La parabole est tournée vers le bas, son sommet est sur l'axe des abscisses.

b) $3x^2 - 2x + 1 > 0$. Soit Δ le discriminant de $3x^2 - 2x + 1$: $\Delta = (-2)^2 - 4x(3)x(1) = 4 - 12 = -8$ Théorème 5: Soit P(x) = $ax^2 + bx + c$, où $a \ne 0$. Si $\Delta < 0$: P(x) est du signe de a pour x réel

Donc $3x^2 - 2x + 1 > 0$ pour tout x réel (puisque a = 3).

Donc l'inéquation $3x^2 - 2x + 1 > 0$ a pour ensemble de solution \mathbb{R}

Interprétation graphique : La parabole est tournée vers le haut, elle est au dessus de l'axe des abscisses.

Exercice n²: l' inéquation $\frac{-2x+6}{-15x^2+x+2} \ge 0$ peut se résoudre à l'aide d'un tableau de signes.

Soit \triangle le discriminant de -15 x^2 + x +2 : \triangle = (1) 2 -4x(-15)x2 = 1+ 120 = 121

$$\Delta > 0$$
 donc -15 $x^2 + x + 2$ a deux racines x' et x": $x' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - 11}{-30} = \frac{2}{5}$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + 11}{-30} = -\frac{1}{3}$.

 $-\frac{1}{2}$ et 0,4 sont deux valeurs interdites.

On utilise le théorème 2 ci dessus pour le signe de $-15x^2 + x + 2 < 0$

$$-2x+6=0 \Leftrightarrow x=\frac{6}{2}=3$$

l ableau										
х	-8		$-\frac{1}{3}$		0,4		3		+∞	
-2x + 6		+		+		+	0	-		
$-15x^2 + x + 2$		-	0	+	0	-		-		
quotient		-		+		-	0	+		

 $\frac{-2x+6}{-15x^2+x+2} \ge 0 \text{ sur } \left[-\frac{1}{3}; 0, 4 \right] \cup [3, +\infty[$

Figure 1 : les branches de la parabole sont tournées vers le bas donc a <0.

La courbe n'a pas de points d'intersection avec l'axe des abscisses donc l'équation f(x) = 0 n'a pas de solution.

Figure 2 : les branches de la parabole sont tournées vers le haut donc a >0.

La courbe a deux points d'intersection avec l'axe des abscisses donc l'équation f(x) = 0 a deux solutions. Donc $\Delta > 0$.

Exercice n%:

19
$$(3x+2)(x-5)^3 + (x^2-10x+25)(3x+2) = (6x+4)(x-5)^2 \Leftrightarrow (3x+2)(x-5)^3 + (x-5)^2(3x+2) - 2(3x+2)(x-5)^2 = 0$$

 $\Leftrightarrow (3x+2)(x-5)^2[(x-5)+1-2] = 0$
 $\Leftrightarrow (3x+2)(x-5)^2(x-6) = 0$
 $\Leftrightarrow x = -\frac{2}{3}$ ou $x = 5$ ou $x = 6$.

2)
$$x^4 - 2x^2 - 3 = 0$$

 $x^4 - 2x^2 - 3 = 0 \Leftrightarrow \begin{cases} X^2 - 2X - 3 = 0 \\ X = x^2 \end{cases}$

Soit Δ le discriminant de l'équation $X^2 - 2X - 3 = 0$

$$\Delta = (-2)^2 - 4 \times 1 \times (-3) = 16$$

 $\tilde{A} > 0$ donc l'équation $X^2 - 2X - 3 = 0$ a deux solutions réelles distinctes : $X_1 = \frac{2-4}{2} = -1$ et $X_2 = \frac{2+4}{2} = 3$

On en déduit que $x^4 - 2x^2 - 3 = 0 \Leftrightarrow x^2 = -1$ ou $x^2 = 3$.

-1 < 0 et pour tout réel x, $x^2 \ge 0$ donc l'équation $x^2 = -1$ n'a pas de solution dans \mathbb{R} .

$$3 > 0$$
 donc $x^2 = 3 \Leftrightarrow x = -\sqrt{3}$ ou $x = \sqrt{3}$.

Conclusion: l'équation $x^4 - 2x^2 - 3 = 0$ a deux solutions $-\sqrt{3}$ et $\sqrt{3}$

3)
$$\sqrt{x-1} = -2x + 5$$
.

Pour que l'équation soit définie, il faut : $x - 1 \ge 0$. C'est à dire $x \ge 1$.

Pour tout réel x de [1, $+\infty$ [:

$$\sqrt{x-1} = -2x + 5 \iff (x - 1 = (-2x + 5)^2 \text{ et } -2x + 5 \ge 0)$$

$$\sqrt{x-1} = -2x + 5 \iff (x - 1 = 4x^2 - 20x + 25 \text{ et } -2x \ge -5)$$

$$\sqrt{x-1} = -2x + 5 \iff (4x^2 - 21x + 26 = 0 \text{ et } x \le \frac{5}{2}).$$

Soit Δ le discriminant de $4x^2 - 21x + 26$: $\Delta = (-21)^2 - 4x4x26 = 25$

$$\triangle > 0 \text{ donc } \Leftrightarrow 4x^2 - 21x + 24 = 0 \text{ a deux solutions}: \ x' = \frac{21 - 5}{8} = \frac{16}{8} = 2 \ \text{ et } \ x'' = \frac{21 + 5}{8} = \frac{26}{8} = \frac{13}{4} = 3,25 \ .$$

3,25 n'est pas inférieur à $\frac{5}{2}$ donc 3,25 n'est pas solution.

2 > 1 et 2 < 2,5 donc 2 est solution

Conclusion:
$$\boxed{\text{l'équation } \sqrt{x-1} = -2x + 5 \text{ a une solution } 2}$$
.
49 $1 - \frac{3}{x^2 - 1} > 0 \Leftrightarrow \frac{x^2 - 1}{x^2 - 1} - \frac{3}{x^2 - 1} > 0 \Leftrightarrow \frac{x^2 - 4}{x^2 - 1} > 0 \Leftrightarrow \frac{(x - 2)(x + 2)}{(x - 1)(x + 1)} > 0$

x² - 4 est du signe de a =1 c'est à dire positif à l'extérieur des racines et négatif à l'intérieur.

x² - 1 est du signe de a =1 c'est à dire positif à l'extérieur des racines et négatif à l'intérieur.

x	-∞		-2		-1		1		2		+∞
x² - 4		+	0	-		-		-	0	+	
x² - 1		+		+	0	-	0	+		+	
$\frac{x^2-4}{x^2-1}$		+	0	_		+		-	0	+	

$$S =]-\infty; -2[\cup]-1;1[\cup]2; +\infty[$$

59
$$\frac{x^2+5x+4}{3x^2+4x-1}>0$$
.

Soit Δ_1 le discriminant de $x^2 + 5x + 4$: $\Delta_1 = 5^2 - 4x1x4 = 25 - 16 = 9$

$$\Delta_1 > 0$$
 donc $x^2 + 5x + 4$ a deux racines x' et x": $x' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-5 - 3}{2} = -4$ et $x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-5 + 3}{2} = -1$.

Soit Δ_2 le discriminant de $3x^2 + 4x - 1$: $\Delta_2 = 4^2 - 4x - 3x(-1) = 16 + 12 = 28$

 Δ_2 >0 donc 3x² + 4x - 1 a deux racines x' et x" :

$$x' = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-4 - 2\sqrt{7}}{6} = \frac{-2 - \sqrt{7}}{3} \text{ et } x'' = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2 + \sqrt{7}}{3}.$$

$$\frac{-2-\sqrt{7}}{3} \approx -1,54$$
 et $\frac{-2+\sqrt{7}}{3} \approx 0,21$ sont deux valeurs interdites.

x	-∞		-4		$\frac{-2-\sqrt{7}}{3}$		-1		$\frac{-2+\sqrt{7}}{3}$		+∞
$x^2 + 5x + 4$		+	0	-		-	0	-		+	
$3x^2 + 4x - 1$		+		+	0	-		+	0	+	
$\frac{x^2 + 5x + 4}{3x^2 + 4x - 1}$		+	0	_		+	0	-		+	

$$S = \left] - \infty; -4 \left[\cup \right] - \frac{2 + \sqrt{7}}{3}; -1 \left[\cup \right] \frac{-2 + \sqrt{7}}{3}; +\infty \right[$$

Exercice n7:

$$\begin{cases} y = 8 - x \\ xy = 2 \end{cases} \Leftrightarrow \begin{cases} y = 8 - x \\ x(8 - x) = 2 \end{cases} \Leftrightarrow \begin{cases} y = 8 - x \\ 8x - x^2 = 2 \end{cases} \Leftrightarrow \begin{cases} y = 8 - x \\ x^2 - 8x + 2 = 0 \end{cases}$$

$$\Delta = (-8)^2 - 4x1x2 = 64 - 8 = 56 = 4 \times 14$$
.

 \triangle > 0 donc $x^2 - 8x + 2 = 0$ a deux solutions :

$$x' = \frac{8 - 2\sqrt{14}}{2} = 4 - \sqrt{14} \ \ \text{et} \ \ x'' = \frac{8 + 2\sqrt{14}}{2} = 4 + \sqrt{14} \ \ .$$

Le système a deux couples de solutions $\left(4-\sqrt{14};4+\sqrt{14}\right)$ et $\left(4+\sqrt{14};4-\sqrt{14}\right)$