TD ... : FONCTION LOGARITHME NÉPÉRIEN

I) Définition de la fonction logarithme népérien

Exercice n°1 : à la découverte d'une nouvelle fonction de référence.

1) Parmi les touches de la calculatrice, repérer la touche [n]; elle correspond à la fonction « logarithme népérien », notée ln. Vérifier, par exemple, que ln(12) ≈ 2,485.

2) a) Recopier le tableau suivant et compléter les cases pour lesquelles c'est possible (résultats arrondis à 10⁻³ près)

- , ∝, .	1000		100.000		0. 00.	٠.٠	01000		700009		0. p 0 0 0				<u> </u>		
Х	-20	-5	-2,4	-1,2	-0,4	0	0,1	0,5	0,9	0,99	1	1,1	2	5	12	104	10 ⁶
In(x)																	

3°) Tracer, sur l'écran de la calculatrice, la cour be représentative C, d'équation y = ln(x), de la fonction ln. Préciser l'ensemble de définition de la fonction ln.

4) Compléter les limites suggérées par la représen tation graphique .

Exercice n2: le dessin ci-contre donne la représentation graphique C de la fonction ln. A_1 est le point de C d'abscisse 0,5. A_2 est le point de C d'abscisse 1.

 A_3 est le point de C d'abscisse 2. A_4 est le point de C d'abscisse 4.

1°) Soit g la fonction définie sur]0, $+\infty$ [, $g(x) = \frac{1}{x}$.

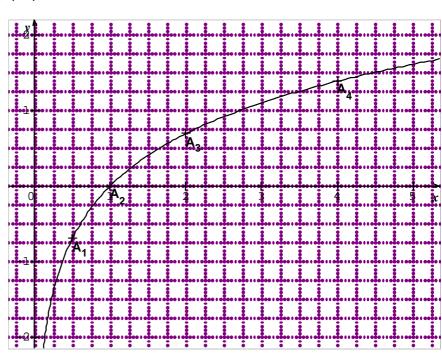
a) Compléter le tableau :

Х	0,5	1	2	4
g(x)				

- b) Tracer sur la figure ci contre les droites :
- ◆T₁ passant par le point A₁ de C d'abscisse 0,5 et de coefficient directeur g(0,5). Que peut t'on dire de T₁?
- $\bullet T_2$ passant par le point A_2 de C d'abscisse 1 et de coefficient directeur g(1). Que peut t'on dire de T_2 ?
- \bullet T₃ passant par le point A₃ de C d'abscisse 2 et de coefficient directeur g(2). Que peut t'on dire de T₃?
- ◆T₄ passant par le point A₄ de C d'abscisse 4 et de coefficient directeur g(4). Que peut t'on dire de T₄?

Quelle conjecture peut-on faire sur la dérivée de la fonction ln.

2°) Déterminer les équations des droites T₁, T₂, T₃ et T₄.



II) Propriétés algébriques.

19 Une fonction qui transforme un produit en somme :

Exercice n3: a) Reproduire le tableau et le compléter à l'aide d'une calculatrice (valeurs arrondies à 0,01 près).

а	b	In (ab)	ln a + ln b
2	3		
3	5		
1,2	5,4		
13	2		
1	2		

Proposer une relation entre ln (ab) et ln a et ln b : ln(ab) =

2°) Conséquences.

Exercice n4: Soient a et b deux réels positifs.

a) Compléter:
$$\ln\left(a \times \frac{1}{a}\right) = \ln\left(\dots\right) = \dots$$
 et $\ln\left(a \times \frac{1}{a}\right) = \ln\left(\dots\right) + \ln\left(\dots\right) + \ln\left(\dots\right) + \ln\left(\dots\right) = \dots$ Conclusion: $\ln\left(\frac{1}{a}\right) = \dots$

b) Recopier et compléter :
$$ln\left(\frac{a}{b}\right) = ln(a \times) = ln(....) + ln(....)$$
. Or $ln\left(\frac{1}{b}\right) =$ Conclusion : $ln\left(\frac{a}{b}\right) =$

c) Compléter:
$$ln(a^2) = ln(... \times) =$$
 $ln(a^3) = ln(a^2 \times) = ...$

Que peut-on conjecturer pour $\ln(a^n)$ où n est un entier naturel ? $\ln(a^n) = \dots$