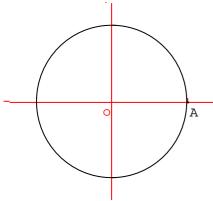
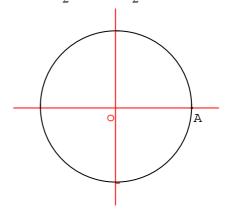
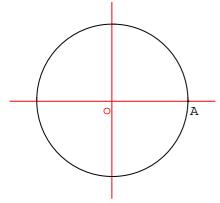
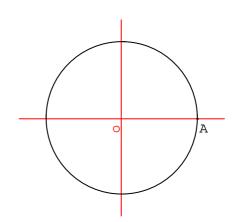

TD N°....: EQUATIONS TRIGONOMETRIQUES ET ANGLES REMA RQUABLES.

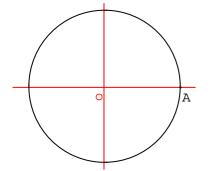

NOM:.....PRENOM:....


I) Angles remarquables:

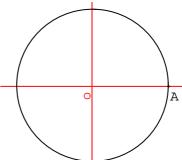
Exercice n°l: Dans chacun des cas suivants, déterminer à l'aide du cercle trigonométrique un réel θ solution du système donné.

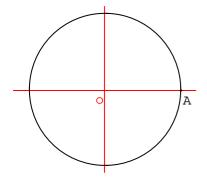

1.a
$$\cos \theta = \frac{1}{2} et \sin \theta = \frac{\sqrt{3}}{2}$$
, $\theta = \dots$ $k \in \mathbb{Z}$ **b.** $\cos \theta = -\frac{1}{2} et \sin \theta = \frac{\sqrt{3}}{2}$, $\theta = \dots$ $k \in \mathbb{Z}$

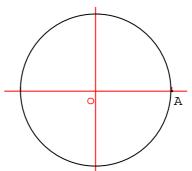




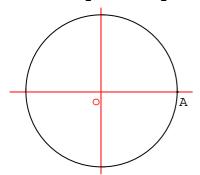
c.
$$\cos \theta = \frac{1}{2} et \sin \theta = -\frac{\sqrt{3}}{2}, \theta = \dots k \in \mathbb{Z}$$

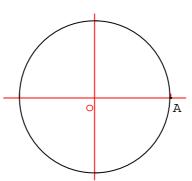



2.a.
$$\cos \theta = \frac{\sqrt{3}}{2} et \sin \theta = \frac{1}{2}, \theta = \dots$$
 $k \in \mathbb{Z}$ **b.** $\cos \theta = -\frac{\sqrt{3}}{2} et \sin \theta = \frac{1}{2}, \theta = \dots$ $k \in \mathbb{Z}$


b.
$$\cos \theta = -\frac{\sqrt{3}}{2} et \sin \theta = \frac{1}{2}, \theta = \dots$$
 $k \in \mathbb{Z}$

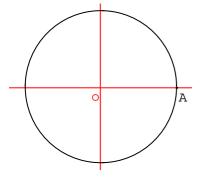
c.
$$\cos \theta = \frac{\sqrt{3}}{2} et \sin \theta = -\frac{1}{2}, \theta = \dots$$
 $k \in \mathbb{Z}$

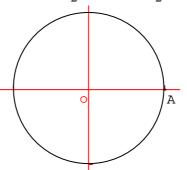

$$\mathbf{c}. \ \cos\theta = \frac{\sqrt{3}}{2} \ et \ \sin\theta = -\frac{1}{2} \ , \ \theta = \dots \\ \qquad \qquad \mathsf{k} \in \mathbb{Z} \qquad \qquad \mathbf{d}. \ \cos\theta = -\frac{\sqrt{3}}{2} \ et \ \sin\theta = -\frac{1}{2} \ , \ \theta = \dots \\ \qquad \qquad \mathsf{k} \in \mathbb{Z}$$



3.a.
$$\cos \theta = \frac{\sqrt{2}}{2} et \sin \theta = \frac{\sqrt{2}}{2}, \theta = \dots$$

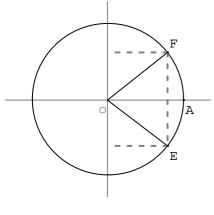
TD N°....: EQUATIONS TRIGONOMETRIQUES ET ANGLES REMA RQUABLES.

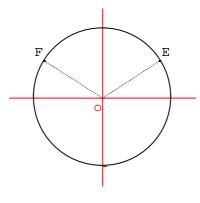

3.a.
$$\cos\theta = \frac{\sqrt{2}}{2} et \sin\theta = \frac{\sqrt{2}}{2}$$
, $\theta = \dots$ $k \in \mathbb{Z}$ b. $\cos\theta = -\frac{\sqrt{2}}{2} et \sin\theta = \frac{\sqrt{2}}{2}$, $\theta = \dots$ $k \in \mathbb{Z}$

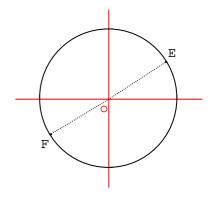


$$\mathbf{c}. \ \cos\theta = \frac{\sqrt{2}}{2} \ et \ \sin\theta = -\frac{\sqrt{2}}{2} \ , \ \theta = \dots \\ \mathbf{k} \in \mathbb{Z} \qquad \mathbf{d}. \ \cos\theta = -\frac{\sqrt{2}}{2} \ et \ \sin\theta = -\frac{\sqrt{2}}{2} \ , \ \theta = \dots \\ \mathbf{k} \in \mathbb{Z}$$

d.
$$\cos \theta = -\frac{\sqrt{2}}{2} et \sin \theta = -\frac{\sqrt{2}}{2}, \theta = \dots$$
 $k \in \mathbb{Z}$




Exercice n2 : 1. Déterminer l'ensemble des solutions appartenant à l'intervalle $[0;4\pi]$ de l'équation $\sin x = \frac{\sqrt{3}}{2}$


2. Déterminer l'ensemble des solutions appartenant à l'intervalle $\left[-\pi; 2\pi\right]$ de l'équation $\cos x = -\frac{\sqrt{3}}{2}$

II) Angles associés:

Exercice n3: Dans chacun des cas suivants, exprimer à l'aide du cercle trigonométrique les expressions données en fonction de

cos(-x) =

 $\cos(\pi - x) =$

 $cos(\pi+x) =$

sin(-x) =

 $\sin (\pi - x) =$

 $sin(\pi + x) =$