CHAPITRE: SUITES ARITHMETIQUES

\Portable hélène\Mes documents\Terminales\tle suites\tfcge suites arithmétiques.doc

I) Définition :

1°) Exemple : soit la suite définie par :

 $u_0 = -1$; $u_1 = 1$; $u_2 = 3$; $u_3 = 5$; $u_4 = 7$; ... chaque terme s'obtient en ajoutant 2 au précédent : cette suite est arithmétique.

2°) Définition:

Une suite arithmétique est une suite numérique dont chaque terme s'obtient en ajoutant au précédent un nombre réel constant a appelé *raison*.

Pour tout nombre entier naturel n, $u_{n+1} = u_n + a$

3°) Application:

Exercice $n^{\circ}1$: On considère la suite arithmétique de raison a = -100 et de premier terme 2000. Ecrire u_{n+1} en fonction de u_n . Calculer le deuxième terme et le troisième terme.

II) Expression de u_n en fonction de n :

1°) propriété 1 :

- a) Pour une suite arithmétique de premier terme u_0 et de raison a : $u_0 = u_0 + na$ pour tout n de \angle
- b) Pour une suite arithmétique de premier terme u_1 et de raison a : $u_n = u_1 + (n-1)a$ pour tout n de \angle^*

Cas a)
$$u_1 = u_0 + a$$
 $u_2 = u_1 + a = u_0 + 2a$ $u_3 = u_2 + a = u_0 + 3a$ $u_4 = u_{n-1} + a = u_0 + na$ Cas b) $u_2 = u_1 + a$ $u_3 = u_2 + a = u_1 + 2a$ $u_4 = u_3 + a = u_1 + 3a$ $u_5 = u_{n-1} + a = u_0 + na$ Cas b) $u_4 = u_1 + a$ $u_5 = u_1 + a$ $u_7 = u_{1} + a = u_1 + a$ $u_8 = u_{1} + a = u_1 + a$ $u_8 = u_{1} + a = u_1 + a$ $u_8 = u_{1} + a = u_1 + a$ $u_8 = u_{1} + a = u_1 + a$ $u_8 = u_{1} + a = u_1 + a$

On peut retenir que : u_n = (premier terme)+ (nombre de termes avant u_n)×(raison).

2°) Applications:

Exercice n°2:

- a) Calculer le 1000ème nombre impair
- b) Soit la suite arithmétique (u_n) de premier terme $u_0 = 3$ et de raison $r = -\frac{1}{2}$. Calculer le $33^{\text{ème}}$ terme.

Exercice n°3: exercice n°13 page 62

III) Somme des n premiers entiers naturels non nuls :

1°) Exemple : somme des 100 premiers entiers naturels

Somme écrite de gauche à droite : $S_{100} = 1 + 2 + 3 + ... + 98 + 99 + 100$ Somme écrite de droite à gauche : $S_{100} = 100 + 99 + 98 + ... + 3 + 2 + 1$

Addition membre à membre des 2 égalités. $2xS_{100} = 101 + 101 + 101 + 101 + 101 + 101$

Dans chaque colonne, la somme est égale à 101 $2xS_{100} = 100 \times 101$

 $S_{100} = \frac{100 \times 101}{2} = 5050$

Remarque : Gauss fit cette démonstration mentalement à l'âge de 7 ans.

2°) Propriété 2:

La somme des n premiers nombres entiers non nuls est : $1+2+3+....+n=\frac{n(n+1)}{2}$

- 3°) Exercice n°4: calculer la somme des 23 premiers entiers naturels non nuls.
- 4°) Somme des premiers termes d'une suite arithmétique :
- a) **Exercice n°5**: Déterminer la somme des 100 premiers termes d'une suite arithmétique définie par les données suivantes : Premier terme : $u_0 = 2$; raison a = 5.
- b) **Exercice n°6**: Calculer S = 2 + 5 + 8 + ... + 74
- c) Propriété 3 (admise) :

Si (u_n) est une suite arithmétique alors la somme de ses premiers termes est $\left(nombre\ de\ termes\right) \times \frac{premier\ terme + dernier\ terme}{2}$

Pour s'entraîner : exercice n°1 page 61 sauf 4) et 5)

CHAPITRE: SUITES ARITHMETIQUES

V) Reconnaître et utiliser une suite arithmétique dans un contexte concret

Exercice n°5: Une Municipalité a décidé de rénover chaque année 45 logements, qui viendront s'ajouter au parc de logements H.L.M. En janvier 1997, on dénombre 450 logements HLM..

- 1°) Montrer que le nombre de logements H.L.M.est une suite arithmétique dont on donnera le premier terme et la raison.
- 2°) Combien y aura-t-il de logements H.L.M. en janvier 2005 ?
 3°) On compte un loyer annuel par logement occupé. On suppose tous les logements H.L.M. occupés et tous les loyers payés. Combien la municipalité aura-t-elle perçu de loyers pendant la période 1997-2005, années extrêmes comprises ?

III) Sens de variation et représentation graphique :

1°) Théorème:

Une suite arithmétique de raison a est :

- croissante si a >0
- décroissante si a<0
- constante si a = 0.