\\Portable_hélène\mes documents\Secondes\Cours Secondes\Repérage dans le plan\reperage_vecteurs_plan.doc

I) Repérage dans une base :

1°) Base:

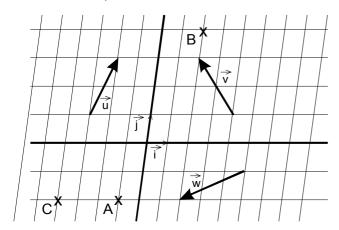
a) Définition :

Deux vecteurs \vec{i} et \vec{j} non colinéaires, pris dans cet ordre forment une base des vecteurs du plan.

On note cette base (i, j).

b) Conséquence : tous les vecteurs du plan pourront être exprimés en fonction de ces deux vecteurs non colinéaires i et j.

Exercice n°1: Exprimer un vecteur dans une base.



En effectuant une lecture graphique de la figure, exprimer les vecteurs \vec{u} , \vec{v} et \vec{w} en fonction des vecteurs \vec{i} et \vec{j} .

2°) Coordonnées d'un vecteur dans une base :

a) Théorème :

Soit (\vec{i}, \vec{j}) une base de l'ensemble des vecteurs du plan. Tout vecteur \vec{u} se décompose de manière unique sous la forme $\vec{u} = x\vec{i} + y\vec{j}$ (où x et y sont deux nombres réels).

b) Définition :

Dans la base (\vec{i}, \vec{j}) , le vecteur \vec{u} , défini par la relation : $\vec{u} = x\vec{i} + y\vec{j}$ a pour coordonnées (x; y).

x s'appelle l'abscisse du vecteur $\vec{\mathbf{u}}$ dans la base (\vec{i},\vec{j}) et y s'appelle l'ordonnée du vecteur $\vec{\mathbf{u}}$ dans la base (\vec{i},\vec{j}) .

On écrit simplement $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$, ou $\vec{u}(x,y)$

c) Savoir lire les coordonnées d'un vecteur sur un graphique et tracer des représentants de vecteurs dont on connaît les coordonnées.

Exercice n°2: Reprendre la figure 1.

Indiquer les coordonnées des vecteurs dans la base (\vec{i} , \vec{j}).

Tracer un représentant des vecteurs $\vec{z} \binom{-1}{3}$, $\vec{t} = 2\vec{i} - 2\vec{j}$.

Préciser les coordonnées des vecteurs \vec{i} , \vec{j} , \vec{x} , \vec{y} , \vec{r} dans la base (\vec{i},\vec{j}) avec $\vec{x}=2(\vec{i}+\vec{j})-3\vec{j}$; $\vec{y}=-\frac{3}{2}(\vec{i}-\vec{j})$; $\vec{r}=\frac{5}{3}\vec{j}$ Pour s'entraîner exercices n°58 3°) page 153, 74 b) page 155, 82 1°)a) page 156.

II) Coordonnées de vecteurs : propriétés

1°) Activité d'approche : voir exercice n°1 du TD n° ...

Dans tout ce qui suit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{u'} \begin{pmatrix} x' \\ y' \end{pmatrix}$ sont deux vecteurs dans la base (\vec{i}, \vec{j})

2°) Egalité de vecteurs :

\Portable_hélène\mes documents\Secondes\Cours Secondes\Repérage dans le plan\reperage_vecteurs_plan.doi

Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées. $\vec{u} = \vec{u}' \Leftrightarrow \begin{cases} x = x' \\ et \\ y = y' \end{cases}$

3°) Somme de vecteurs :

Pour calculer les coordonnées de la somme de deux vecteurs, on ajoute leurs coordonnées : $\vec{u} + \vec{u'} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$

4°) Produit d'un vecteur par un réel :

Si on multiplie un vecteur par k, ses coordonnées sont multipliées par k. $k\bar{u} \begin{pmatrix} kx \\ ky \end{pmatrix}$

5°) Application:

Exercice n°3: Soit les vecteurs $\vec{u} = 6\vec{i} - 2\vec{j}$ et $\vec{u}'(7;4)$. Calculer les coordonnées des vecteurs $\vec{u} + \vec{u}'$, $3\vec{u}'$, $\frac{1}{2}\vec{u} - 3\vec{u}'$

6°) Colinéarité de deux vecteurs.

- a) **Exercice n°4**: Donner trois vecteurs colinéaires au vecteur \vec{u} ($-\frac{2}{3}$, 2)
- b) Activité d'approche : voir exercice n°2 du TD n°
- c) Théorème :

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{u'} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs dans la base (\vec{i}, \vec{j}) :

 $\vec{u}\begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{u}'\begin{pmatrix} x' \\ y' \end{pmatrix}$ sont colinéaires si et seulement si xy'-x'y = 0

d) Application : reconnaître des vecteurs colinéaires (méthode L page 143)

Exercice n°5: Soient les vecteurs $\vec{u} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$; $\vec{u'} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ et $\vec{w} = 1.5\vec{i} + 2\vec{j}$.

Les vecteurs \vec{u} et $\vec{u'}$ sont-ils colinéaires ? Et les vecteurs \vec{u} et \vec{w} ?

Pour s'entraîner : exercice n°67 et 68 page 154.

III) Repère du plan :

1°) Repère

Définition : On appelle repère cartésien tout triplet $(0, \vec{i}, \vec{j})$ dans lequel :

- O est un point du plan, appelé origine du repère
- $-(\vec{i},\vec{j})$ est une base du plan

L'axe (O, \vec{i}) est appelé « axe des abscisses » et l'axe (O, \vec{j}) « axe des ordonnées »

2°) Coordonnées d'un point d'un vecteur :

a) Propriété :

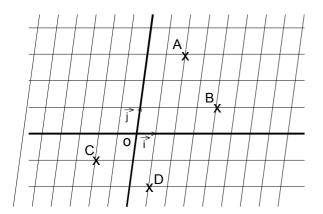
Soit (O, \vec{i}, \vec{j}) un repère du plan et M un point quelconque

Les trois phrases suivantes sont équivalentes :

- $-OM = x\vec{i} + y\vec{j}$
- -Le point M a pour couple de coordonnées (x, y)
- -Le vecteur OM a pour couple de coordonnées (x ,y).
- b) Déterminer des coordonnées dans un repère (O, \vec{i}, \vec{j})

\Portable_hélène\mes documents\Secondes\Cours Secondes\Repérage dans le plan\reperage_vecteurs_plan.doc

Exercice n°6:



On considère le repère (O, \vec{i}, \vec{j}) .

- ♦ Placer le point M tel que $\overrightarrow{OM} = \vec{i} + 2\vec{j}$. Quels sont les coordonnées de M dans le repère (O, \vec{i}, \vec{j}) ?
- Placer le point P tel que $\overrightarrow{AP} = -2\overrightarrow{i} \overrightarrow{j}$
- ♦ Exprimer les vecteurs \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} et \overrightarrow{OD} en fonction des vecteurs \overrightarrow{i} et \overrightarrow{i} .
- ♦ Même énoncé pour les vecteurs \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} , \overrightarrow{CA} , \overrightarrow{CD} et \overrightarrow{DC} .

Pour s'entraîner : exercices n°58 page 153.

c) Déterminer des coordonnées dans un repère autre que (O, \vec{i}, \vec{j}) (Méthode I page 141) : exercice n°61 page 153 Pour s'entraîner : exercices n°76 page 155, 78 page 156, 88 1°) 89 2°) et 91 page 157.

3°) Coordonnées d'un vecteur AB et coordonnées du milieu d'un segment

a) Théorème :

Dans le repère (O, \vec{i}, \vec{j}) , si les coordonnées des points A et B sont (x_A, y_A) et (x_B, y_B) alors :

- Le vecteur \overrightarrow{AB} a pour coordonnées $\left(x_{B}-x_{A},y_{B}-y_{A}\right)$.
- Le milieu I du segment [AB] a pour coordonnées $\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$
- b) **Exercice n°7**: Soient A (-2; 4), et C (4; 6) dans un repère $(0, \vec{i}, \vec{j})$

Déterminer les coordonnées du vecteur du \overrightarrow{AC} , et les coordonnées du milieu I de [AC]

Pour s'entraîner : exercices n°80 page 156

4°) Démontrer avec des coordonnées (méthode J page 141) : exercice n°63 page 153

Pour s'entraîner : exercices n°64 1°) page 154

5°) Calculer les coordonnées d'un point (méthode K page 141) :

Exercice n°8: Soient A (-2; 4), B (-3; 5) et C (4; 6) dans un repère $(0, \vec{i}, \vec{j})$. Faire une figure

- a) Calculer les coordonnées du point D tel que ABCD soit un parallélogramme .
- b) Calculer les coordonnées du point M tel que : AM + 2BM + 3CM = 0
- c) Calculer les coordonnées du point N symétrique de A par rapport à C

Pour s'entraîner : exercices n°65 et 66 page 156 et 85 page 157 exercices n°80 page 156 et 85 page 157

6°) Coordonnées et colinéarité : (Montrer un alignement et un parallélisme)

Exercice 9 : Les points A , B , C sont-ils alignés ?

- a) A(2;3), B(5;7), C(-7;-9).
- b) A (5;7), B (0;1) et C ($-\frac{3}{4}$,0).

Exercice 10 : Les droites (AB) et (CD) sont - elles parallèles ?

- a) A(2;1), B(5;-3), C(0;3) et D(6;-5).
- b) A ($-\frac{5}{2};\frac{7}{2}$) , B ($\frac{3}{2};\frac{1}{2}$), C (5 ; -2) et D (-1 ; $\frac{5}{2}$)

Exercice 11 : Soit $\vec{m} \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ et $\vec{n} \begin{pmatrix} x+3 \\ 2x-5 \end{pmatrix}$. Trouver x pour que \vec{m} et \vec{n} soient colinéaires . Trouver alors le réel k tel que \vec{m} = k \vec{n} .

Pour s'entraîner : exercices n°69, 70 et 71 page 154. n°87 à 89 page 157

IV) Cas particulier le repère orthonormal

1°) Base orthogonale:

\\Portable hélène\mes documents\\Secondes\\Cours Secondes\\Repérage dans le plan\reperage vecteurs plan.doc

Définition : une base (\vec{i}, \vec{j}) des vecteurs du plan est orthogonale lorsque les directions des vecteurs \vec{i} et \vec{j} sont perpendiculaires.

- 2°) **Norme d'un vecteur** (rappel) : une unité de longueur est choisie dans le plan
- a) Définition : soit \vec{u} un vecteur, A et B deux points tels que $\vec{u} = \overrightarrow{AB}$.

On appelle norme du vecteur \overrightarrow{u} la longueur du vecteur \overrightarrow{AB} . On note $\|\overrightarrow{u}\| = AB$ et on lit "la norme du vecteur \overrightarrow{u} est égale à la distance AB". En particulier $\|\overrightarrow{AB}\| = AB$

b) Vecteur unitaire : on appelle vecteur unitaire (ou vecteur normé) tout vecteur de norme 1.

3°) Base orthonormale, repère orthonormal

Définition : une base (\vec{i}, \vec{j}) est orthonormale (ou encore orthonormée) lorsqu'elle est orthogonale et que \vec{i} et \vec{j} sont unitaires. Un repère $(0, \vec{i}, \vec{j})$ est orthonormal (ou orthonormé) lorsque la base (\vec{i}, \vec{j}) est orthonormale.

Autrement dit :

$$\left(\mathbf{O},\vec{i}\,,\vec{j}\,\right)$$
 orthonormé signifie
$$\begin{cases} \vec{i}\,\bot\,\vec{j}\\ et \\ \left\|\vec{i}\right\| = \left\|\vec{j}\right\| = 1 \end{cases}$$

C'est à dire: les axes de coordonnées sont perpendiculaires et on utilise la même unité pour graduer les deux axes

4°) Norme d'un vecteur, distance de deux points

a) Propriété: calcul de la norme d'un vecteur

Soit un vecteur \vec{u} de couple de coordonnées (x, y) dans une base orthonormale (\vec{i}, \vec{j}) , on a $\|\vec{u}\| = \sqrt{x^2 + y^2}$

b) Savoir calculer la norme de vecteurs en base orthonormale.

Exercice n°12: Soit (\vec{i}, \vec{j}) une base orthonormale du plan. Soient les vecteurs $\vec{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\vec{v} = 2\vec{i} + 3\vec{j}$ et $\vec{w} \begin{pmatrix} 3 \\ 5 \end{pmatrix}$

Faire une figure. Calculer $\|\overrightarrow{u}\|$, $\|\overrightarrow{v}\|$ et $\|\overrightarrow{w}\|$.

5°) Distance de deux points

a) Propriété: calcul de la distance de deux points

La propriété précédente généralise la relation déjà utilisée au collège:

Soit deux points A (x_A, y_A) et B (x_B, y_B) dans un repère orthonormal $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

b) Savoir calculer des distances en repère orthonormal (voir méthode N page 143)

Exercice n°13: Placer les points A (1,2),B (3,-1) et C (9,3) dans un repère orthonormal. Le triangle ABC est-il rectangle?

Pour s'entraîner exercices n°72 et 73 page 143, exercices n°95 à 98 page 158